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Abstract—In this work, we present a novel non-visual HAR
system that achieves state-of-the-art performance on realistic
SCE tasks via a single wearable sensor. We leverage surface
electromyography and inertial data from a low-profile wearable
sensor to attain performant robot perception while remaining
unobtrusive and user-friendly. By capturing both convolutional
and temporal features with a hybrid CNN-LSTM classifier,
our system is able to robustly and effectively classify complex,
full-body human activities with only this single sensor. We
perform a rigorous analysis of our method on two datasets
representative of SCE tasks, and compare performance with
several prominent HAR algorithms. Results show our system
substantially outperforms rival algorithms in identifying complex
human tasks from minimal sensing hardware, achieving F1-
scores up to 84% over 31 strenuous activity classes. To our
knowledge, we are the first to robustly identify complex full-
body tasks using a single, unobtrusive sensor feasible for real-
world use in SCEs. Using our approach, robots will be able to
more reliably understand human activity, enabling them to safely
navigate sensitive, crowded spaces.

I. INTRODUCTION

As the technology becomes more robust, capable, and
affordable, robots are increasingly recognized as invaluable
assets in dynamic, safety-critical environments (SCEs), such
as emergency departments (EDs) and manufacturing plants.
Clinicians and manufacturing workers routinely face substan-
tial physical and cognitive burden, placing them among the
populations most at-risk of developing work-related injury and
burnout [1, 2]. For instance, Welfare et al. [3] found that
manufacturing workers often worry about health issues such as
poor ergonomics and high physical demands in the workplace.
Similarly, burnout among physicians can deteriorate their
physical and mental health [4, 5], as well as increase the
risk of preventable medical errors, the third leading cause of
death in the United States [6]. Robots’ consistency, precision,
and physical strength make them promising candidates for
alleviating or eliminating tasks that contribute to these burdens.
However, existing robots lack the situational understanding
to navigate in dynamic, uncertain, and risk-laden workspaces
around human agents to safely perform complex tasks.

If robots are to improve conditions for workers and clientele
in SCEs, they need to autonomously and robustly recognize
tasks performed by their human teammates [7, 8]. This topic
of human activity recognition (HAR) in real-world, dynamic
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Fig. 1. Activities from the MIT-UCSD Human Motion dataset. From left to
right, top to bottom: Walking, Scanning Part, Attaching Part, Pincer Grasp,
Palmar Grasp, Thumb-3 Fingers Grasp.

environments like SCEs is a central problem in robotics
[9, 10]. To date, most HAR research has relied on visual
sensor data, but visual sensing is not always viable for robots
operating in SCEs due to poor lighting, prevalent occlusion,
and disruptive installation [10, 11]. In addition, these settings
are often privacy-sensitive, involving patients seeking medical
attention, or employees handling proprietary materials. Thus,
from an ethical engineering perspective, it is important to
consider non-visual sensing approaches [12].

Thus, many researchers have shown interest in non-visual
HAR (NVHAR). Prior work often leverages wearable sensors
(e.g. accelerometers, gyroscopes) to capture body motion [9].
Recently, researchers started exploring surface electromyog-
raphy (sEMG), a noninvasive technology that measures the
electrical activity of skeletal muscles. Classifiers use sEMG
data to differentiate subtle differences in fine motion that is
difficult to capture with inertial sensors alone (c.f. [13, 14]).

Despite the abundance of techniques studied in NVHAR,
only a handful of systems are designed to recognize tasks
robots will encounter in real-world SCEs [10]. It is standard
in the field to build and evaluate systems by recognizing
activities of daily living (ADLs) (c.f. [15]) or a closed set
of carefully chosen hand gestures (c.f. [13, 14]). However,
the motions represented in such datasets are not generalizable
to the complex tasks robots must respond to in SCEs, such
as deft manipulation of specialized tools, or specific medical
procedures [16, 17]. The question of how best to perform
NVHAR in real-world SCEs remains an open research area.

Moreover, despite the potential for sEMG sensors to im-



prove classification accuracy and robustness, to our knowledge
no work has explored how sEMG can benefit NVHAR in
SCEs. The few projects that investigate NVHAR in SCEs
have largely utilized extensive arrays of accelerometers (c.f.
[18, 19]), occasionally augmented with nontraditional sensors
such as microphones (c.f. [20]). Considering its success in
recognizing fine hand motions and other traditionally difficult
actions, sEMG presents a promising avenue for improving the
accuracy of NVHAR in SCEs.

In this work, we present a novel NVHAR system to
support robust human-robot teaming in SCEs. Our system
informs the robot of its teammates’ actions through inertial
and sEMG signals captured by an unobtrusive armband. This
raw multimodal input is processed by an hybrid neural network
(NN) architecture that leverages the complementary benefits of
convolutional and recurrent layers to capture complex spatial
and temporal features. We evaluate our work on two datasets
representative of tasks performed in SCEs: MIT-UCSD Human
Motion [16], which consists of common manufacturing tasks
(see Fig. 1), and MyoGym, a dataset of strenuous exercises
demonstrating action primitives for manual labor. Evaluation
results show that our system achieves state-of-the-art perfor-
mance when presented with ample training data of relevant
SCE tasks.

The contributions of the paper are threefold: First, to our
knowledge, we are the first to compare the performance
of several prominent NVHAR classifiers in addressing tasks
specific to SCEs, rather than everyday activities such as ADLs.
Second, we conduct an analysis of the effect of supplementing
inertial data with sEMG on the feasibility of classifying whole-
body SCE tasks from single-sensor recordings. Finally, we
present a novel wearable NVHAR system that leverages hybrid
deep learning to improve upon rival algorithms and achieve
state-of-the-art human task awareness for robots in SCEs.

The approach presented in this work will enable robots to
fluently understand and collaborate with human partners on
complex, strenuous tasks, and confer the numerous benefits of
human-robot collaboration to people in SCEs worldwide.

II. BACKGROUND

A. Wearable NVHAR Sensors

The most common sensors used for NVHAR are IMUs [9,
10]. IMUs measure linear acceleration, rotational acceleration,
orientation, or a combination of the three, and are often worn
on the limbs or torso. Researchers have also taken advantage
of the IMUs found in mobile devices for a variety of studies
in-the-wild [9, 10, 21, 22].

A limited number of prior work investigated IMUs for
NVHAR in SCEs. Stiefmeier et al. [19] fused 27 IMUs
and radio-frequency identification sensors to recognize tasks
on a car assembly line. Inoue et al. [18] recorded inertial
data from multiple accelerometers to recognize a variety of
nursing tasks. In contrast to these past systems, which employ
complicated and bulky sensor arrays, our approach uses a
single armband sensor in order to recognize activities with
minimal encumbrance.

Fig. 2. (a) The Myo armband can measure sEMG, linear acceleration,
and angular acceleration of the wearer’s arm movements. (b) Recognizing
activities in a manufacturing setting with the Myo.

Recently, researchers have begun to investigate sEMG sen-
sors for NVHAR, either alone or as a supplement to inertial
signals. Several groups have employed sEMG in recognition
and assessment of ADLs [23], balance [24], and gait [25].
Others have investigated fine hand motions, and have used
arm and wrist sEMG to determine hand gestures [26], or to
recognize American Sign Language [14]. However, these tasks
do not represent the specialized activities or equipment that
robots would encounter in SCEs. Furthermore, these systems
often utilize numerous obtrusive sensors and are thus not
appropriate for use in real-world SCEs.

In contrast, the Myo armband (see Fig. 2) is a compact, arm-
worn device that houses an 8-channel sEMG and a 9-axis IMU
[27]. Recent studies leverage affordable, unobtrusive sensor
for exploring multimodal NVHAR [16, 28–30]. Researchers
found that augmenting inertial sensors with sEMG sensors
from the Myo considerably improves classification accuracy of
strenuous exercises [29] and ADLs [30]. However, approaches
such as that presented by Koskimäki et al. [29] still exhibit
substandard results (up to 72% accuracy), leaving considerable
room for improvement. Totty et al. [30] achieved up to 89.2%
accuracy classifying ADL functional groups. However, the
approach exhibits several limitations. First, the approach pre-
sented is unable to recognize the specific activity performed,
but only the high level category (e.g. no activity, functional).
In addition, the dataset considered only included basic upper
extremity tasks, and does not represent the intensive whole-
body tasks relevant to SCEs.

Despite the success of the Myo and of sEMG HAR in
general, to our knowledge, there is no work demonstrating
a system that can reliably recognize realistic, complex worker
tasks performed in real-world SCEs. The complex networks
of sensors suggested in studies such as [23] and [19] are
cumbersome and delicate, which makes them unfit for use in
real-world SCEs. Furthermore, none of these studies explored
more than a few basic classifiers on inertial+sEMG data. It
remains an open question what classification approach is best
suited to decoding these complicated multimodal signals.



Fig. 3. The architectures of the deep HAR models used in this work. For clarity, the input vectors displayed represent a single time window in a batch. (a)
The CNN extracts local patterns among multiple data channels. (b) The LSTM network identifies important temporal features. (c) The hybrid CNN-LSTM
identifies temporal patterns using convolutional features.

B. NVHAR Classification

Researchers have employed a variety of classification tech-
niques to address NVHAR. One attractive method is Linear
Discriminant Analysis (LDA) as it easily generalizes to multi-
class classification and does not require hyperparameter tuning
[29]. Another widely-used approach is k-Nearest Neighbors
(k-NN), which classifies new instances as the most common
class of the k most similar training samples. k-NNs produce
noteworthy results for inertial NVHAR of ADLs compared to
other popular algorithms [30, 31].

Recently, successes in areas such as image and speech
recognition have inspired researchers to employ deep learning
for NVHAR. Deep learning approaches mitigate the need
for hand-crafted features, which are difficult to design for
mobile and wearable sensor streams [32]. The most common
deep learning approaches for NVHAR are convolutional NNs
(CNNs) and recurrent NNs (RNNs) [33]. CNNs construct
spatial features from signals by taking convolutions of input
channels at each timepoint. On the other hand, RNNs ex-
tract temporal features, i.e. how the evolution of the signal
over time informs the prediction. Long short-term memory
networks (LSTMs), the most widely used RNN, improve
upon traditional RNNs by selectively truncating error gradients
in backpropagation to allow the network to learn long-term
dependencies in input signals [34].

CNNs have become popular in NVHAR for applications
such as classifying ADLs (c.f. [35]) and fall detection (c.f.
[36]). In addition, the ability to leverage the temporal structure
of activity signals makes LSTMs a promising tool for NVHAR
of tasks with complicated, time-dependent patterns [33]. Other
recent work uses a combination of convolutional and recurrent
layers for NVHAR (c.f. [33]). These combined CNN-LSTM

architectures capitalize on the CNN layers’ ability to extract
convolutional features that best represent the state at each
timestep, from which the LSTM layers learn the temporal
evolution of that state over the input sequence. While CNN-
LSTMs are rather new to NVHAR, they can achieve state-of-
the-art accuracy on non-visual data [33].

III. METHODOLOGY

In this paper, we expand upon past work in the following
ways. First, we evaluate the performance of several prominent
NVHAR algorithms on realistic worker tasks to determine the
most effective techniques for use in SCEs. In particular, we in-
vestigate three deep learning approaches (CNN, LSTM, CNN-
LSTM) and two machine learning classifiers (k-NN, LDA).
Second, we investigate the promise of supplementing inertial
wearable sensors with sEMG across each dataset, task, and
algorithm. Finally, we present and validate a cohesive NVHAR
system that employs a single, practical armband sensor to
effectively classify SCE tasks, enabling fluent human-robot
interaction in these spaces.

A. Datasets and Preprocessing

We evaluate our system on two datasets representative of
tasks common in SCEs: MIT-UCSD Human Motion [16]
and MyoGym [29]. MIT-UCSD Human Motion consists of
24 trials each containing 13 gross and fine assembly tasks
performed in a realistic automobile factory simulation: four
gross motion dashboard assembly tasks, and nine fine motion
block assembly and grasping tasks. MyoGym includes 10
participants performing 30 strenuous gym exercises, repre-
sentative of lifting, pushing, and carrying tasks. All data in
both datasets were collected by a Myo armband worn on



TABLE I
MEAN F1 SCORES OBTAINED FOR EACH DATA MODALITY ON EACH DATASET FOR EACH CLASSIFIER. ACROSS THE CLASSIFIERS, DATA MODALITY, AND

DATASET, WE AVERAGED THE F1 SCORES FROM EVERY TRIAL. A HIGHER F1 SCORE IS BETTER.

MIT-UCSD Human Motion MyoGym
CNN-LSTM CNN LSTM k-NN LDA CNN-LSTM CNN LSTM k-NN LDA

Inertial+sEMG .35 .36 .22 .31 .33 .84 .39 .28 .36 .74
Only Inertial .31 .36 .24 .35 .30 .84 .38 .23 .39 .69

the dominant forearm, and contain 6-channel inertial (tri-axial
accelerometer, tri-axial gyroscope) and 8-channel sEMG data
collected at 50 Hz.

Data were segmented into 50% overlap 1 second and
1.5 second input windows for MIT-UCSD and MyoGym,
respectively. We use a shorter window for MIT-UCSD due
to shorter task durations. We standardized each input channel
of each train set to µ = 0 and σ = 1 over all training data.
To simulate real-time performance, we standardized test data
to µ = 0 and σ = 1 with a moving window of data points in
the past 1 second. Because data in MyoGym were collected
continuously through all 30 exercises, the null class represents
approximately 78% of all training data. To discourage the
trivial solution (i.e. always predicting the majority class), we
reduced the number of null class instances through random
undersampling of null sequences.

B. Classifiers

We built three NN classifiers to perform NVHAR: a CNN,
an LSTM, and a hybrid CNN-LSTM. We aimed to minimize
variation due to arbitrary hyperparameter choices (e.g. number
of layers, activation functions) by making analogous design
choices across networks. In this way, we ensure that differ-
ences in classification accuracy are more closely tied to the
type of network than differences in these hyperparameters.
Each network was designed with two convolutional or recur-
rent layers, a fully connected layer, and a softmax output layer
(see Fig. 3). We use two feature-extracting layers for each
network to control for layer ordering effects and isolate the
effect of layer type on classification.

All kernels use a stride of 20 ms, the sample rate of the
Myo. Convolutional layers used a kernel of 500 ms for MIT-
UCSD, and a kernel of 1200 ms for MyoGym. We chose
these relatively large kernels to simulate temporal memory in
convolutional layers. Per convention, we apply a max-pooling
layer between convolutional layers. This layer uses a kernel
size of 40 ms. LSTM layers contained 64 hidden units, and
fully connected layers contained 1000, as chosen by cross-
validation. Convolutional, LSTM, and fully connected layers
were activated with ReLU functions, and output layers used
softmax activation for classification.

In order to compare to existing literature, we tested each
dataset on an LDA (see [29]) and a k-NN (k = 5) (see
[16, 30]). Since these classifiers cannot autonomously select
informative features from data, we extracted 57 linear accel-
eration features, 54 angular velocity features, and 112 sEMG-
based features as input, as recommended by Koskimaki et

al. [29]. In contrast, our network algorithms were only fed
raw data. This allows us to compare the efficacy of expert-
recommended features against those generated autonomously
by NNs for classifying SCE tasks.

C. Evaluation

All classifiers were trained separately on both datasets until
convergence. We evaluated performance metrics based on
leave-n-trials-out cross-validation. In order to ensure sufficient
training data was available, we used n = 1 for MIT-UCSD,
and n = 3 for MyoGym. We did not perform resampling or
class-balancing on the test data to simulate a robot perceiving
human actions in real-time.

We report micro-F1 score as our evaluation metric, as it
more faithfully represents classification performance across
unbalanced classes compared to accuracy and macro-F1 score.
To analyze the variation in outcome measures, we performed
a three-way repeated-measures analysis of variance (ANOVA)
across classifier, data modality, and dataset.

IV. RESULTS

All effects are reported significant at p < 0.05. Mauchlys
tests indicated that that the assumption of sphericity was vio-
lated for the main effect of classifier, as well as the interaction
effects of classifier and data modality, and that of classifier
and dataset. We corrected for this using Greenhouse-Geisser
estimates of sphericity. Each of our measures had a significant
main effect on F1 score (classifier: F (2.06, 267.36)=472.1,
modality: F (1, 130) = 5.9, dataset: F (1, 130) = 642.3).
There were also significant interaction effects between modal-
ity and classifier, F (2.79, 362.76) = 10.9, between dataset and
classifier, F (1.952, 253.76) = 359.7, and between modality
and dataset F (1, 130) = 35.1. This suggests that the type of
sensing capabilities as well as dataset have different effects on
classification accuracy depending on the classifier used.

Contrasts reveal that the CNN-LSTM performed signifi-
cantly better than the other classifiers overall on the MyoGym
dataset. This architecture performed consistently better than
the LSTM and k-NN across all evaluations. The CNN-LSTM
also performed significantly better than the LDA on MyoGym
when sEMG was present, but saw no significant improvement
over LDA in the other scenarios. On MIT-UCSD, there was
no significant advantage shown using CNN-LSTM instead of
LDA or CNN. There was no significant difference between
the performance of the CNN-LSTM and LDA or CNN on
the MIT-UCSD dataset. The classifiers performance decreased
slightly but significantly across both datasets when no sEMG



Fig. 4. Average micro-F1 scores (across all trials) for the classifier type and sensor data channels, separated by dataset.

signal was available, suggesting our system performs ade-
quately even with less information available.

The average F1 score for the MIT-UCSD dataset across
all classifiers and modalities was 31.2 ± 5.0%, significantly
lower than the performance on the MyoGym dataset (51.6
± 23.6%.). All classifiers performed significantly better on
the MyoGym dataset or had no significant change. Including
sEMG in training and classification had significant overall
positive effect on F1 score across classifier. The inclusion of
sEMG significantly assisted every classifier except the overall
performance of the LSTM, and the performance of the CNN
on the MIT-UCSD dataset.

V. DISCUSSION

Our evaluation suggests that a hybrid CNN-LSTM architec-
ture offers superior identification of SCE tasks in a realistic
environment compared to prominent rival techniques. We
found that CNN-LSTM architecture excels in environments
that exhibit strenuous pushing, pulling, and lifting tasks,
attaining 84% accuracy across 30 different actions on the
MyoGym dataset. Additionally, the hybrid architecture is on
par with other state-of-the-art classifiers over the MIT-UCSD
dataset. This suggests that the combination of convolutional
and recurrent layers with forearm sEMG and inertial signals
is a promising approach for supporting robot understanding of
complex human activities in real-world environments.

Although popular in recent literature, our evaluation sug-
gests that k-NN is unsuited to NVHAR in SCEs, even when
aided by expert feature selection. This is interesting, as it
has been widely validated as a suitable means for identifying
ADLs [16, 30, 31]. This implies that more specific, alternative
approaches, such as a hybrid CNN-LSTM, may be necessary
to support safe and robust NVHAR in SCEs and other complex
environments. Tasks in SCEs are complex and stochastic,
and take even humans substantial time to learn when newly
introduced [37]. In order to ensure safe and accurate NVHAR,
it is important not to take a previously successful classifier’s
effectiveness for granted. Instead, one must evaluate all robot
systems on realistic data for the target environment.

Beyond classifiers, our results also suggest benefits of
supplementing inertial data with sEMG. We found that sEMG

signals were informative for pushing and pulling tasks, and
assisted most classifiers in broadly categorizing tasks that
involved targeted hand movements, such as assembling blocks.
They also helped in discerning between tasks with similar
movements, such as reaching forward to receive an automobile
part versus doing so to install it in the dashboard.

However, one limitation of this work is that due to the
small size of the MIT-UCSD dataset (approximately 4000 1-
second sequences), the relative performance of each classifier
is difficult to gauge. In particular, the CNN-LSTM still has
significant room for improvement, as it is widely known that
NNs require substantial training data to learn informative
features. This premise is supported by the poor performance of
the other classifiers when trained on this dataset. Nevertheless,
given our system requires only an unobtrusive wearable sensor
to gather data, a real-world implementation should have little
issue collecting ample training data for robust performance.

While we found that sEMG signals are beneficial in some
cases, sEMG had a detrimental effect when classifying tasks
that involved raising the arms and lifting. Furthermore, sev-
eral deep learning approaches performed worse when sEMG
was included, suggesting that the additional modalities may
confound classification on smaller or more intricate datasets.
Caution and careful testing should be used when exploring
whether sEMG sensing benefits future NVHAR applications.
Future work will explore several avenues for expanding this
NVHAR system. As the purpose of this work was to identify
the most effective technique for SCEs, we performed no
hyperparameter optimization. Moving forward, we will fine-
tune hyperparameters and explore other NN architectures. In
addition, in order to continue developing systems that perform
in real SCEs, we intend to to gather a larger dataset of
real-world manufacturing and ED tasks. We will make these
datasets publicly available to empower the robotics community
to investigate NVHAR in SCEs.

In this paper, we propose a novel NVHAR system that
aims to to support robot integration into SCEs by enabling
robust identification of human activity. To our knowledge, this
system is the first NVHAR approach that is able to robustly
identify complex full-body tasks using a single, unobtrusive



sensor feasible for real-world use in SCEs. With the ability to
more accurately distinguish between complex activities, robots
will no longer be excluded from human-dense, safety-critical
environments. Through our work, researchers will be able to
develop advanced robots that can improve health and quality
of life of the millions of workers worldwide.
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